Nanty, M. T. (1912). Ann. Chim. Phys. 27, 7-29, 29-89.
Nanty, M. T. (1913). Ann. Chim. Phys. 28, 77-131, 132-191, 191-208.
Ohba, S., Toriumi, K., Sato, S. \& Saito, Y. (1978). Acta Cryst. B34, 3535-3542.
Olovsson, I. (1980). Electron and Magnetization Densities in Molecules and Crystals, edited by P. Becker, pp. 831-894. New York: Plenum Press.

Olovsson, I. \& Jönsson, P.-G. (1976). The Hydrogen Bond Recent Developments in Theory and Experiment, Vol. 2, edited by P. Schuster, G. Zundel \& C. Sandorfy, pp. 395-456. Amsterdam: North-Holland.
Stevens, E. D., Delucia, M. L. \& Coppens, P. (1980). Inorg. Chem. 19, 813-820.
Taurian, O. E., lunell, S. \& Tellgren, R. (1987). J. Chem. Phys. 86, 5053-5059.

Acta Cryst. (1990). B46, 466-474

Structure and Electron Density of Pentasodium Trihydrogentetracarbonate

By Nelson G. Fernandes,* Roland Tellgren and Ivar Olovsson
Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 13 December 1989; accepted 14 February 1990)

Abstract

$\mathrm{Na}_{5} \mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}, \quad M_{r}=358 \cdot 1$, triclinic, $\quad P \overline{1}, \quad a=$ 3.4762 (1), $\quad b=10.0393$ (2), $\quad c=15.5969$ (3) $\AA, \quad \alpha=$ $107.770(2), \quad \beta=95.589(2), \quad \gamma=95.028(2)^{\circ}, \quad V=$ $511.90(2) \AA^{3}, Z=2, D_{x}=2 \cdot 32 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \quad \mu=0.379 \mathrm{~mm}^{-1}, \quad F(000)=356, \quad T=$ $298 \mathrm{~K}, R\left(F^{2}\right)=0.0287$ for 8956 unique reflections. The carbonate groups are linked by hydrogen bonds to form two independent $\left[\mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}\right]^{5-}$ fragments. There are four hydrogen bonds in the asymmetric unit, two of which are asymmetric with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.572 (1) and 2.597 (1) \AA. The other two are symmetric with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.492 (1) and 2.507 (1) \AA. Apparently, the H atoms in these symmetric hydrogen bonds are not located at inversion centres. Deformation densities in the covalent bonds of the carbonate groups are correlated with $\mathrm{C}-\mathrm{O}$ bond order.

Introduction

The present study is part of a series of studies of short hydrogen bonds in hydrogen carbonates. Previous work has involved $\mathrm{KMgH}\left(\mathrm{CO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{KNiH}\left(\mathrm{CO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Fernandes, Tellgren \& Olovsson, 1988, 1990).

The salt $\mathrm{Na}_{2} \mathrm{CO}_{3} .3 \mathrm{NaHCO}_{3}$ is reported to occur as the mineral wegscheiderite (Fahey \& Yorks, 1963), a name given in honour of Wegscheider who was the first to synthesize it. Cell dimensions for the mineral and the synthetic crystal have been determined by Appleman (1963); optical properties have been measured by Fahey \& Yorks (1963). Phase-equilibrium studies of the system $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}-\mathrm{H}_{2} \mathrm{O}$ have

[^0]been performed by Hill \& Bacon (1927) and by Waldeck, Lynn \& Hill (1934). Differential thermal analysis (Barral \& Rogers, 1966) shows that it is an intermediary product of the decomposition of NaHCO_{3}. From Raman and IR spectral studies of undeuterated and deuterated powder samples at 298 and 93 K , Bertoluzza, Monti, Morelli \& Battaglia (1981) predicted the main structure of the anion as discrete $\left[\mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}\right]^{5-}$ units.

Experimental

The phase diagram of the ternary system $\mathrm{NaHCO}_{3}-$ $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{H}_{2} \mathrm{O}$ has been studied at several temperatures, from 298 to 323 K by Hill \& Bacon (1927) and from 373 to 473 K by Waldeck, Lynn \& Hill (1934). On this basis a composition was chosen such that the two phases in equilibrium at 373 K would be a saturated solution and the solid $\mathrm{Na}_{5} \mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}$. At room temperature $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was completely dissolved in water and then NaHCO_{3} was added. The system was sealed and kept in an electric oven at 373 K . After two weeks the solid material consisted of fibrous and needle-like crystals as was reported for the natural compound (Fahey \& Yorks, 1963). A crystal with well developed faces of size $0.10 \times 0.14 \times$ 0.29 mm was selected and checked for twinning etc. by the Weissenberg technique. All subsequent X-ray measurements were performed on an automated Stoe-Philips four-circle diffractometer, graphite monochromator, $\lambda($ Mo $K \alpha)=0.71073 \AA$. Unit-cell parameters were determined from the refinement of 2θ angles of 104 reflections, $10 \leq 2 \theta \leq 30^{\circ}$; they agree qualitatively with the values reported for the mineral (Appleman, 1963). In this work the sequence of the unit-cell axes was chosen in agreement with the conventions for defining a reduced basis (Inter-
(c) 1990 International Union of Crystallography
national Tables for Crystallography, 1983). Data collection was performed in the $\omega-2 \theta$ scan mode, step width in ω equal to $0.010^{\circ}, 96$ steps at a rate from 1.0 to 3.0 s step ${ }^{-1} ; K \alpha$ splitting was considered, 15242 reflections were measured, $-8 \leq h \leq 8,-23 \leq k \leq$ $23,-35 \leq l \leq 35$. The complete reciprocal-lattice sphere was investigated in the interval $0<\sin \theta / \lambda \leq$ $0.9044 \AA^{-1}$; in the interval $0.9044<\sin \theta / \lambda \leq$ $1 \cdot 1237 \AA^{-1}$ a unique set was recorded for those reflections which had $I \geq 2 \sigma(I)$ in the pre-scan measurements.
The data set was corrected for background effects (Lehmann \& Larsen, 1974), and for Lorentz, polarization and absorption effects (transmission factors $0.944-0.965$). The intensities of five standard reflections, measured at 6 h intervals, decreased linearly with time, $I_{t}=\left(0.9778-0.5823 \times 10^{-4} t\right) I_{0}$, where I_{t} is the intensity recorded at time t, in h , and I_{0} is the estimated intensity at $t=0$. The appropriate correction for this effect was applied to all measured reflections ($I \geq 0$) and resulted in an agreement factor $R_{\text {int }}=0.0123$, compared with $R_{\text {int }}=0.0275$ before this correction. A total of 8956 unique reflections were obtained. The variance V of an averaged reflection was taken as the larger of $V_{1}=\left[\sum w_{i}\left(I_{i}-\right.\right.$ $\left.\langle I\rangle)^{2}\right] / \sum w_{i}$ or $V_{2}=\sum \sigma_{i}^{2} / n$, where $w_{i}=1 / \sigma_{i}^{2}$ and σ_{i}^{2} is the variance due to counting statistics and the above corrections; I_{i} is the measured (corrected) intensity; and $\langle I\rangle$ is the mean intensity. The inverse of V was used as weight in the least-squares refinements.

Conventional refinements

The structure was solved by direct methods using the program MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Neutral-atom scattering factors and dispersion corrections were taken from International Tables for X-ray Crystallography (1974). Full-matrix leastsquares refinement was performed using the scale factor and positional and anisotropic thermal parameters for non-H atoms; the function minimized was $\sum w\left(F_{o}^{2}-k F_{c}^{2}\right)^{2}$. The H atoms were located from difference Fourier syntheses and their thermal parameters refined isotropically. Extinction corrections could be neglected. The programs used in the computations have been described by Lundgren (1982). Stereoscopic illustrations were drawn using ORTEPII (Johnson, 1969).
The data set included 322 reflections with negative intensities. These reflections could have been included in the refinement as it was performed in F^{2}. However, their true intensities must be non-negative. Therefore, the data set was processed by a Bayesian method (French \& Wilson, 1978) in order to bring all intensities to non-negative values (cf. Schwarzenbach et al., 1989). The FORTRAN routine used to calcu-

Table 1. Details of the refinements

A, free-atom model refinement. B, deformation refinement, 128 deformation coefficients. $\quad \Delta=\left|F_{o}\right|^{2}-\left.F_{c}\right|^{2}, \quad \sigma=\sigma\left(F_{o}{ }^{2}\right), \quad w=1 / \sigma^{2}, \quad(\sin \theta / \lambda)_{\max }=$ $1 \cdot 1218 \AA^{-1}, n$ (number of observations) $=8956$.

A	C
$3.0151(17)$	$3.0023(43)$
200	318
0.0438	0.0287
0.0595	0.0347
1.933	1.136
285	28
1.2×10^{3}	$<0.5 \times 10^{-3}$
$-0.50,0.63$	$-0.25,0.29$

late the (a posteriori) expected value and variance of the intensity of a reflection is one of those written by French \& Wilson (deposited as SUP 33352). The reliability indices for a refinement according to this procedure are shown in Table 1 (refinement A).
The two hydrogen bonds across the centres of symmetry are relatively long, O6 \cdots O6 [2.494 (1) \AA], $\mathrm{O} 12 \cdots \mathrm{O} 12[2 \cdot 507(1) \AA$]. Therefore the H atoms might vibrate in a double potential well rather than in a single one. Furthermore, their thermal parameters were larger than others ($c f$. Table 2). A refinement with H 2 and H 4 as half atoms in general positions was therefore performed. The value of $w R$ showed a significant improvement at the 0.001 significance level (Hamilton, 1965). A further refinement was made of a model which also included two sites for H 1 and H 3 in the asymmetric $\mathrm{O} \cdots \mathrm{O}$ bonds [2.572 (1) and 2.597 (1) \AA], but the occupancies of alternative minority sites were judged to be non-significant.

Deformation refinements

The scattering model of all atoms was improved by adding to the spherical scattering factors a set of functions, according to the Hirshfeld (1971, 1977) formalism. In this model the atomic multipole functions are of the type

$$
\rho_{n}\left(r_{a}, \theta_{k}\right)=N_{n} r_{a}^{n} \exp \left(-\alpha_{a} r_{a}\right) \cos ^{n} \theta_{k}
$$

where a indicates an atomic centre, $0 \leq n \leq 4, r_{a}$ is the distance of a point r from the nucleus a, α_{a} is the shape parameter, $\boldsymbol{\theta}_{k}$ is the angle between the vector r_{a} and specified polar axis k, and N is a normalizing constant.
Functions for $n \leq 2$ were used for the H atoms in the symmetric hydrogen bonds; $n \leq 3$ for H 1 and H 3 ; $n \leq 4$ for all C, O and Na atoms. The site symmetry assigned to each atom was: 'spherical' for all Na; 'axial' for all H atoms along the $\mathrm{O}-\mathrm{H}$ bonds; mm 2 for $\mathrm{C} 1, \mathrm{C} 3, \mathrm{O} 1, \mathrm{O} 2, \mathrm{O}, \mathrm{O} 7, \mathrm{O} 8$ and $\mathrm{O} 11 ; m$ for C 2 , $\mathrm{C} 4, \mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O} 10$ and O12. All Na atoms shared the same deformation functions, and a chemical equivalence between the two $\mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}$ fragments
was assumed. Therefore the number of deformation atom types was nine.

Since the thermal parameters of H atoms derived from X-ray data are in general biased, Hirshfeld (1976) suggests that they should be estimated from other observations of internal and external vibrations. However, reliable thermal parameters for the H atoms are not available and therefore the thermal parameters of the H atoms were arbitrarily fixed at B $=3 \cdot 50 \AA^{2}$.

A series of refinements with different models for the distribution of the H atoms in the hydrogen bond were carried out. The number of deformation coefficients refined in any model was 128.

The reliability indices and deformation maps from these different refinements were literally equal and therefore the deformation maps and data reported in the tables correspond to the refinement in which the H atoms in the symmetric hydrogen bonds were fixed at the centre of symmetry. Further relaxation of symmetry and chemical constraints did not improve the reliability indices.

From Table 1 it can be seen that a model which takes into account the non-spherical distribution of the valence electrons nicely fits the experimental data. The positional and equivalent isotropic displacement parameters are shown in Table 2.*

Discussion

The structure of NaHCO_{3} contains infinite chains of HCO_{3}^{-}(Sharma, 1965), whereas the structure reported here contains two independent $\left[\mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}\right]^{5-}$ fragments in which the carbonate groups are linked via hydrogen bonds. A stereoscopic view of the unit-cell contents is shown in Fig. 1, a list of interatomic distances and angles is given in Table 3. The oxygen arrangement around the Na atoms is shown in Fig. 2; the $\mathrm{Na}-\mathrm{O}$ distances range from 2.29 to $2.66 \AA$. The coordination number of the Na atoms is not equal: considering the $\mathrm{Na}-\mathrm{O}$ contacts less than $2.7 \AA, \mathrm{Na}$ has a coordination number equal to seven, Na 2 equal to five and finally $\mathrm{Na} 3-\mathrm{Na} 5$ equal to six (Na 2 has a sixth neighbour, O4, which completes the octahedron but it is $3 \cdot 17 \AA$ apart). The survey by Brown (1988) shows that the coordination number of Na varies between four and eight. On the other hand, it is noticeable that all 12 O atoms have the same coordination, four neighbours.

[^1]Table 2. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$ from the deformation refinement

	x	${ }^{\prime}$	z	$\left\langle u^{2}\right\rangle$
NaI	0.78632 (5)	0.67317 (2)	0.04873 (1)	1.898 (5)
Na 2	0.81130 (5)	$0 \cdot 18185$ (2)	0.09932 (1)	2.000 (6)
Na 3	0.18047 (4)	0.71800 (2)	0.27916 (1)	1.813 (5)
$\mathrm{Na4}$	0.42761 (4)	0.21298 (2)	0.30787 (1)	1.853 (5)
Na 5	0.77185 (5)	0.74803 (2)	0.47762 (1)	1.780 (5)
Ol	0.28749 (9)	0.55431 (4)	0.09748 (3)	2.201 (10)
O 2	$0 \cdot 37640$ (8)	$0 \cdot 34347$ (5)	0.10976 (2)	1874 (9)
O3	0.62239 (16)	0.54136 (7)	0.22131 (5)	1.733 (11)
04	0.94197 (15)	$0 \cdot 38381$ (7)	0.30290 (5)	1.703 (11)
O5	$0 \cdot 18035$ (8)	0.60058 (5)	0.39492 (2)	1.565 (8)
O6	0.30491 (16)	0.40970 (8)	0.43290 (5)	1.691 (11)
07	030385 (9)	0.85333 (4)	0.05650 (3)	1.947 (9)
O8	$0 \cdot 30195$ (8)	0.06961 (5)	0.15427 (2)	1.728 (8)
O9	0.07345 (13)	0.87712 (7)	0.18646 (6)	1.772 (11)
O 10	0.88991 (12)	0.06120 (7)	0.32907 (5)	1.803 (11)
Oll	0.73764 (7)	0.86380 (5)	0.36291 (2)	1.512 (8)
$\mathrm{Ol2}$	0.64812 (13)	0.07382 (7)	0.45689 (5)	1.705 (11)
C1	0.41972 (12)	0.47544 (4)	0.13898 (4)	1291 (9)
C2	$0 \cdot 13807$ (12)	0.46837 (5)	0.37668 (4)	1216 (9)
C3	$0 \cdot 23680$ (11)	0.93709 (4)	0.12978 (3)	1322 (9)
C4	0.75976 (10)	0.99593 (5)	0.38122 (4)	$1 \cdot 149$ (9)
H1*	0.715	0.469	0.248	4.4
H1+	0.708 (3)	0.474 (1)	0.246 (1)	3.3 (4)
H2*	0.500	0.500	0.500	4.4
H2 ${ }^{+}$				$6 \cdot 2$ (7)
H3*	0.009	0.955	$0 \cdot 239$	4.4
H3 \dagger	0.018 (3)	0.945 (1)	0.232 (1)	1.6 (3)
H4*	0.500	0.000	$0 \cdot 500$	4.4
H4 \dagger				6.6 (8)

* Distances $\mathrm{O} 3-\mathrm{HI}$ and $\mathrm{O} 9-\mathrm{H} 3$ extended and fixed to $1.0 \AA$ (cf. Olovsson \& Jönsson, 1976). Hydrogen thermal parameters not refined, see text.
\dagger Refined hydrogen parameters derived from the free-atom model.

Fig. 1. The unit-cell contents of $\mathrm{Na}_{5} \mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}$. In this and the following figures the thermal vibration ellipsoids are drawn to include 50% probability (results from the deformation refinement).

Fig. 2. The coordination around the Na ions in $\mathrm{Na}_{5} \mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}$.

Table 3. Selected interatomic distances (\AA) and angles $\left(^{\circ}\right)$ from the deformation refinement

$\mathrm{Cl}-\mathrm{Ol}$	1-255 (1)	O9-H3	1.000
$\mathrm{Cl}-\mathrm{O} 2$	$1 \cdot 252$ (1)	O10 \cdots H	1.604 (1)
$\mathrm{Cl}-\mathrm{O} 3$	1.344 (1)	$\mathrm{Ol2} \mathrm{H}_{4}$	1.253 (1)
C2-04	$1 \cdot 288$ (1)	$\mathrm{Ol2}{ }^{\circ} \mathrm{Ol} 2$	$2 \cdot 507$ (1)
C2-05	1.261 (1)		
C2-06	1.315 (1)	$\mathrm{Ol}-\mathrm{Cl}-\mathrm{O} 2$	$125 \cdot 32$ (5)
C3-07	$1 \cdot 252$ (1)	$\mathrm{Ol}-\mathrm{Cl}-\mathrm{O}_{3}$	115.67 (5)
C3-08	$1 \cdot 260$ (1)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}_{3}$	119.01 (5)
C3-09	$1.352(1)$	O4-C2-05	123.17 (5)
C4-O10	$1 \cdot 281$ (1)	O4-C2-06	116.40 (6)
C4-O11	$1 \cdot 262$ (1)	O5-C2-06	$120 \cdot 41$ (5)
C4-012	1.317 (1)	O7-C3-08	126.32 (4)
O3 ${ }^{\circ} \mathrm{O} 4$	2.572 (1)	O7-C3-O9	115.63 (5)
$\mathrm{O} 3-\mathrm{HI}$	1.000	O8-C3-09	118.04 (5)
O4 $\cdots \mathrm{HI}$	1.590 (1)	O10-C4-O11	122.99 (5)
O6 \cdots H2	$1 \cdot 246$ (1)	$\mathrm{O10}-\mathrm{C4}-\mathrm{O12}$	116.65 (6)
O6 \cdots O6	$2 \cdot 492$ (1)	$\mathrm{Ol1-C4-O12}$	$120 \cdot 37$ (5)
O9 O10	2.597 (1)	$\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 4$	165.97 (4)
		O9-H3 \cdots O10	171.19 (5)

Table 4. Mean-square vibration amplitudes $\left(\AA^{2} \times 10^{4}\right)$ of covalently bonded non- H atoms A and B in the direction of bond $A-B$ for rigid-bond tests of vibration parameters

	Free-atom model refinement			Deformation refinement		
$A \quad B$	z_{A}^{2}	z_{B}^{2}	$\left\|z_{A}^{2}-z_{B}^{2}\right\|$	z_{A}^{2}	z_{B}^{2}	$\left\|z_{A}^{2}-z_{B}^{2}\right\|$
$\mathrm{Cl}-\mathrm{Ol}$	144 (3)	120 (4)	24 (5)	125 (2)	120 (2)	5 (3)
$\mathrm{Cl}-\mathrm{O} 2$	137 (2)	115 (2)	22 (2)	120 (1)	117 (1)	3 (2)
$\mathrm{Cl}-\mathrm{O} 3$	146 (2)	128 (2)	18 (2)	142 (1)	132 (1)	10 (2)
C2-O4	135 (2)	122 (1)	13 (2)	123 (1)	120 (1)	3 (2)
C2-O5	117 (2)	104 (2)	14 (3)	104 (1)	103 (1)	2 (2)
C2-06	125 (3)	116 (3)	9 (4)	116 (2)	113 (2)	3 (3)
C3-07	151 (2)	131 (2)	20 (3)	131 (1)	130 (1)	2 (2)
C3-O8	137 (2)	120 (2)	17 (2)	122 (2)	120 (1)	2 (2)
C3-09	126 (3)	114 (3)	12 (4)	123 (2)	119 (2)	4 (3)
C4-O10	124 (3)	111 (3)	13 (4)	113 (2)	110 (3)	3 (3)
C4-O11	115 (2)	98 (2)	17 (3)	101 (1)	10 (1)	1 (2)
$\mathrm{C} 4-\mathrm{Ol2}$	122 (2)	113 (2)	9 (3)	110 (2)	109 (2)	1 (2)

Fig. 3. Dynamic deformation density in a plane defined by Na4, O 4 and O 10 . Another O4 and O10 lie $0 \cdot 10-0 \cdot 15 \AA$ above the plane; they are indicated by + . Contours here and in the following figures are at intervals of $0.05 \mathrm{e} \AA^{-3}$. Solid and dashed lines denote positive and negative contours, respectively; the zero level has been omitted.

There are four hydrogen bonds, out of which $\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 4, \quad 2 \cdot 572(1)$ and $\mathrm{O} 9-\mathrm{H} 3 \cdots \mathrm{O} 10$, $2 \cdot 597$ (1) \AA are asymmetric. The two symmetric hydrogen bonds are shorter, $\mathrm{O} 6 \cdots \mathrm{H} 2 \cdots \mathrm{O} 6,2 \cdot 491$ (1) and $\mathrm{O} 12 \cdots \mathrm{H} 4 \cdots \mathrm{O} 12,2 \cdot 507(1) \AA$. All carbonate groups are planar, the maximum deviation from a least-squares plane through the atoms occurs in the $\mathrm{C} 2-\mathrm{O} 4-\mathrm{O} 5-\mathrm{O} 6$ plane, 0.007 (1) \AA. However, the entire $\mathrm{H}_{3}\left(\mathrm{CO}_{3}\right)_{4}$ fragment is not at all planar. For example, the angle between the $\mathrm{C} 1-\mathrm{O} 1-\mathrm{O} 2-\mathrm{O} 3$ and $\mathrm{C} 2-\mathrm{O} 4-\mathrm{O} 5-\mathrm{O} 6$ planes is $4 \cdot 0^{\circ}$, and the angle between the $\mathrm{C} 3-\mathrm{O} 7-\mathrm{O} 8-\mathrm{O} 9$ and $\mathrm{C} 4-\mathrm{Ol} 0-$ $\mathrm{O} 11-\mathrm{O} 12$ planes is 7.9°. The $\mathrm{C}-\mathrm{O}$ distances are of the same magnitude as in other hydrogencarbonate systems, for example KHCO_{3} (Thomas, Tellgren \& Olovsson, 1974), $\mathrm{KMgH}\left(\mathrm{CO}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ (Fernandes,

Fig. 4. Dynamic deformation densities in the least-squares planes of two of the carbonate groups (a) $\mathrm{Cl}, \mathrm{O1}, \mathrm{O} 2, \mathrm{O} 3$; (b) $\mathrm{C} 2, \mathrm{O} 4$, O5, O6. Contours as in Fig. 3.

Tellgren \& Olovsson, 1988) and $\mathrm{KNiH}\left(\mathrm{CO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Fernandes, Tellgren \& Olovsson, 1990).

Experimental deformation densities

The distance between positions obtained in the spherical-atom and deformation refinements, the asphericity shift, has a maximum value of 0.003 (1) \AA for O2.

According to the rigid-bond postulate (Hirshfeld, 1976), the difference $\left|z_{A}^{2}-z_{B}^{2}\right|$ shall vanish for a pair of covalently bonded atoms A and B, where z_{A}^{2} and z_{B}^{2} are the mean-square amplitudes of vibration of the atoms A and B along the $A-B$ bond. In Table 4 these quantities are listed and for comparison the results obtained in the spherical-atom refinement are also given. It is notable that z_{C}^{2} is consistently larger than z_{O}^{2} which could be an indication that the
neutral-atom model assumed is not absolutely true. It appears that the rigid-bond postulate is verified after the deformation refinement, since $\left|z_{A}^{2}-z_{B}^{2}\right|$ is not significantly different from zero for most pairs of atoms. This means that the deformation refinement has succeeded in distinguishing between nonspherical valence-electron distributions and effects of thermal smearing. However, in this data set some systematic errors have not been minimized, for example TDS effects (Willis \& Pryor, 1975).

Deformation density maps are shown in Figs. 3-9. In these maps the estimated error calculated from the variance-covariance matrix (Rees, 1977) is $0.05 \mathrm{e} \AA^{-3}$ outside a radius of $0.20 \AA$ around each nucleus (except H). In regions inside this radius the errors are larger than the contours. For the H atoms this radius is $0 \cdot 15 \AA$. In Fig. 3 a section passing through Na 4 is shown. A circular depletion around

Fig. 5. (a)-(d) Dynamic deformation density in sections through the $\mathrm{C}-\mathrm{O}$ bonds, perpendicular to the least-squares plane of the respective carbonate group. Contours as in Fig. 3.

Na is observed. This feature may be interpreted as a consequence of the spherical scattering factor used, that is, the number of electrons around Na is less than the number of electrons in a neutral Na atom.

Owing to the uncertainty in the position and thermal parameters of the H atoms, the dynamic deformation density is reported in this work, although the rigid-bond test (Table 4) would allow a static deformation density calculation. Since symmetry and chemical constraints were imposed, only a set of independent sections is shown. Fig. 4 presents the experimental dynamic deformation density in the mean molecular planes of two carbonate groups; the $\mathrm{C} 2-\mathrm{O} 4-\mathrm{O} 5-\mathrm{O} 6$ group is linked to another via a symmetric hydrogen bond and to $\mathrm{Cl}-\mathrm{Ol}-\mathrm{O} 2-\mathrm{O} 3$ via a symmetric hydrogen bond and to $\mathrm{Cl}-\mathrm{Ol}-$ O2-O3 via an asymmetric hydrogen bond. It is observed that in the $\mathrm{C} 1-\mathrm{O} 1, \mathrm{C} 1-\mathrm{O} 2, \mathrm{C} 2-\mathrm{O} 4$ and $\mathrm{C} 2-\mathrm{O} 5$ bonds the peaks are higher than the peaks in $\mathrm{C} 1-\mathrm{O} 3$ and $\mathrm{C} 2-\mathrm{O} 6$, which we interprete as a consequence of the larger π character present in the former bonds. In addition to the bond peaks, there are two maxima outside each O atom, $\mathrm{O} 1, \mathrm{O} 2$ and O 5 , and a single peak outside O3, O4 and O6. These peaks may be assigned as oxygen non-bonding electrons. Fig. 5 shows deformation densities in sections through selceted $\mathrm{C}-\mathrm{O}$ bonds perpendicular to the carbonate group planes, where it can be seen that the peak height diminishes as the $\mathrm{C}-\mathrm{O}$ bond length increases. Double maxima associated with nonbonding electrons perpendicular to the $\mathrm{C} 2-\mathrm{O} 5$ bond and $0.1 \AA$ behind the O atom can be seen in Fig. 6. Similar maps (not shown) have been obtained for $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 7, \mathrm{O} 8$ and O 11 . The non-bonding density peaks near O4, O6 and O9 are shown in Fig. 7 in sections perpendicular to the corresponding

Fig. 6. Dynamic deformation density in a section perpendicular to the C2-O5 bond, $0 \cdot 1 \AA$ behind the O atom. Contours as in Fig. 3.

Fig. 7. Dynamic deformation density in a section perpendicular to selected $\mathrm{C} \cdots \mathrm{O}-\mathrm{H}$ or $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ planes and bisecting these angles: (a) $\mathrm{C} 2-\mathrm{O} 4 \cdots \mathrm{H} 1$; (b) $\mathrm{C} 2-\mathrm{O} 6 \cdots \mathrm{H} 2$; (c) $\mathrm{C} 3-\mathrm{O} 9-\mathrm{H} 3$. Contours as in Fig. 3.
$\mathrm{C}-\mathrm{O}-\mathrm{H}$ or $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ planes and bisecting those angles (these O atoms are also engaged in hydrogen bonds, in contrast to O 5 etc.). These peaks are considerably higher than the double maxima peaks found in O5 (Fig. 6). A comparison of the density distribution around O 4 and O 5 gives clear evidence that O 4 could be interpreted as being $s p^{3}$ and O 5 as $s p^{2}$ hybridized. The overall features in the carbonate groups resemble those found in $\mathrm{KNiH}\left(\mathrm{CO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Fernandes, Tellgren \& Olovsson, 1990).

The hydrogen bonds

Deformation densities in sections passing through the asymmetric hydrogen bond $\mathrm{O} 9-\mathrm{H} 3 \cdots \mathrm{Ol} 0$ of 2.597 (1) \AA, and the symmetric hydrogen bond $\mathrm{O} 12 \cdots \mathrm{H} 4 \cdots \mathrm{O} 12$ of 2.507 (1) \AA, are shown in Fig. 8. An excess of charge density is found in the O9-H3 bond as well as near O10. Between H 3 and O 10 a depletion is observed. These features are typical for hydrogen bonds of moderate strength [see, for example, Delaplane, Tellgren \& Olovsson (1990)]. The symmetric hydrogen bond (Fig. 8b) is different in the sense that it is $\sim 0.10 \AA$ shorter, the peak height between O 12 and H 4 is lower and the depletion is shifted to the midpoint of the hydrogen bond, which can be a result of the symmetry. However, these features are not a consequence of symmetry alone; as Hermansson (1987) has pointed out, the trough in an $\mathrm{O} \cdots \mathrm{O}$ bond approaches the centre as the $\mathrm{O} \cdots \mathrm{O}$ distance decreases.

The symmetric hydrogen bonds

A refinement with the H 2 and H 4 atoms located at the inversion centre gave the same reliability index as a refinement with two half atoms on each side of the inversion centres. Furthermore, the derived deformation maps were almost identical. However, in an attempt to get some more information on the nature of the symmetric hydrogen bonds, difference Fourier maps were calculated in which H 2 and H 4 had been omitted after the spherical-atom model refinement (Figs. $9 a$ and $9 b$). Double maxima were observed in both cases. Although these maps resemble that reported in the study of $\mathrm{KMgH}\left(\mathrm{CO}_{3}\right)_{2}$ at room temperature (Fernandes, Tellgren \& Olovsson, 1988) there are, at least, two differences: firstly, the maxima in Figs. $9(a)$ and $9(b)$ lie closer to the $\mathrm{O} \cdots \mathrm{O}$ line; secondly, the distance between the two maxima is $\sim 0.50 \AA$, as compared with $\sim 0.70 \AA$ in $\mathrm{KMgH}\left(\mathrm{CO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Looking at the $\mathrm{C}-\mathrm{O}$ bond distances: $\mathrm{C} 1-\mathrm{O} 3,1 \cdot 344$ (1), $\mathrm{C} 3-\mathrm{O}, 1 \cdot 352$ (1), C2-O6, 1.315 (1) and C4-O12, 1.317 (1) Å, it can be noticed that the $\mathrm{C}-\mathrm{OH}$ distances in the symmetric hydrogen bond are significantly shorter than those in the asymmetric ones, but much longer than
a $\mathrm{C} \cdots \mathrm{O}$ bond. This can be interpreted as an intermediate between a $\mathrm{C}-\mathrm{OH}$ and a $\mathrm{C} \cdots \mathrm{O}$ bond, and a support for the off-centre model shown in Figs. 9(a) and $9(b)$. Similar difference Fourier maps were calculated after the deformation refinement and they are shown in Figs. $9(c)$ and $9(d)$ for H 2 and H 4 , respectively. Although the electron distribution is now more concentrated around the inversion centre, the main features are the same and it seems probable that the equilibrium positions for H 2 and H 4 are indeed off the inversion centres.

This work was supported by the Swedish Natural Science Research Council. One of us (NGF) is grateful to the Brazilian Post-Graduate Education Federal Agency (CAPES) for providing a Graduate Fellowship.

Fig. 8. (a), (b) Dynamic deformation density in a plane defined by atoms in selected hydrogen bonds. Contours as in Fig. 3.

Fig. 9. Difference Fourier maps through the symmetric hydrogen bond in which the H atom has been omitted from F_{c}. (a) O6‥06, spherical-atom model; (b) O12 $\cdots \mathrm{Ol} 2$, spherical-atom model; (c) O6 \cdots O6, deformation refinement; (d) O12 $\cdots \mathrm{Ol2}$, deformation refinement. Contours as in Fig. 3.

References

Appleman, D. E. (1963). Am. Mineral. 48, 404-406.
Barral, E. M. \& Rogers, L. B. (1966). J. Inorg. Nucl. Chem. 28, 41-51.
Bertoluzza, A., Monti, P., Morelli, M. A. \& Battaglia, M. A. (1981). J. Mol. Struct. 73, 19-29.

Brown, I. D. (1988). Acta Cryst. B44, 545-553.
Delaplane, R. G., Tellgren, R. \& Olovsson, I. (1990). Acta Cryst. B46, 360-371.
Fahey, J. J. \& Yorks, K. P. (1963). Am. Mineral. 48, 400-403.
Fernandes, N. G., Tellgren, R. \& Olovsson, I. (1988). Acta Cryst. C44, 1168-1172.
Fernandes, N. G., Tellgren, R. \& Olovsson, I. (1990). Acta Cryst. B46, 458-466.
French, S. \& Wilson, K. (1978). Acta Cryst. A34, 517-525.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hermansson, K. (1987). Acta Chem. Scand. Ser. A, 41, 513-526.
Hill, A. E. \& Bacon, L. R. (1927). J. Am. Chem. Soc. 49, 2487-2495.
Hirshfeld, F. L. (1971). Acta Cryst. B27, 769-781.

Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Hirshfeld, F. L. (1977). Isr. J. Chem. 16, 226-229.
International Tables for Crystallography (1983). Vol. A, pp. 737-744. Dordrecht: Kluwer Academic Publishers.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1969). Acta Cryst. A25, 187-194.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Lundgren, J.-O. (1982). Crystallographic Computer Programs. Report UUIC-B13-04-05. Institute of Chemistry, Univ. of Uppsala, Sweden.
Main, R., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Olovsson, I. \& Jönsson, P.-G. (1976). The Hydrogen Bond Recent Developments in Theory and Experiment, Vol. 2, edited by P. Schuster, G. Zundel \& C. Sandorfy, pp. 395-456. Amsterdam: North-Holland.

Rees, B. (1977). Isr. J. Chem. 16, 180-186.
Schwarzenbach, D., Abrahams, S. C., Flack, H. D., Gonschorek, W., Hahn, Th., Huml, K., Marsh, R. E., Prince, E., Robertson, B. E., Rollett, J. S. \& Wilson, A. J. C. (1989). Acta Cryst. A45, 63-75.
Sharma, D. (1965). Acta Cryst. 18, 818-819.

Thomas, J. O., Tellgren, R. \& Olovsson, I. (1974). Acta Cryst. B30, 2540-2549.
Waldeck, W. F., lynn, G. \& Hill, A. E. (1934). J. Am. Chem. Soc. 56, 43-47.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, p. 132. London: Cambridge Univ. Press.

Acta Cryst. (1990). B46, 474-487

Structure Refinement of Commensurately Modulated Bismuth Titanate, $\mathbf{B i}_{\mathbf{4}} \mathbf{T i}_{\mathbf{3}} \mathbf{O}_{\mathbf{1 2}}$

By A. David Rae
School of Chemistry, University of New South Wales, PO Box 1, Kensington, New South Wales 2033, Australia

and John G. Thompson, Ray L. Withers and Anthony C. Willis
Research School of Chemistry, Australian National University, PO Box 4, Canberra City 2601, Australia

(Received 2 November 1989; accepted 2 March 1990)

Abstract

The displacive ferroelectric $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}\left[M_{r}=1171 \cdot 6, a\right.$ $=5 \cdot 450(1), \quad b=5.4059$ (6), $\quad c=32 \cdot 832$ (3) $\AA, \quad \beta=$ $90.00^{\circ}, \quad Z=4, \quad D_{x}=8.045 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=$ $\left.0.7107 \AA, \quad \mu=747.3 \mathrm{~cm}^{-1}, \quad F(000)=1976\right] \quad$ is described at room temperature as a commensurate modulation of an Fmmm parent structure derived from an idealized $14 / \mathrm{mmm}$ structure. Displacive modes of inherent $F 2 m m, B m a b$ and Bbab symmetry are all substantial and reduce the space-group symmetry to $B 2 a b$. A further substantial displacive mode of Bbam symmetry reduces the space-group symmetry to $B 1 a 1$ and induces minor displacive modes of $F m m 2, F 12 / m 1$ and Bmam symmetry. A grouptheoretical analysis of the problem details how the X-ray data can be classified so as to monitor the refinement. To a first-order approximation, the $F 2 \mathrm{~mm}$ and Bbab symmetry components of atom displacements contribute only to the imaginary part of the structure factors. Because the structure factors have a predominant real component, it is easy to get the $F 2 \mathrm{~mm}$ and $B b a b$ displacive components of the O atoms wrong. False minima occur at values of 0.027 for $\quad R_{1}=\sum_{\mathbf{h}}| | F_{\text {obs }}(\mathbf{h})\left|-\left|F_{\text {calc }}(\mathbf{h})\right|\right| / \sum_{\mathbf{h}}\left|F_{\text {obs }}(\mathbf{h})\right|$ but a corrrect solution was obtained with $R_{1}=0.0177$ for 2839 unmerged data with $I(\mathbf{h})>2 \sigma[I(\mathbf{h})]$. Criteria for a correct solution are evaluated and subsequently met. The final refinement used a $0 \cdot 63: 0 \cdot 37$ twin model.

Introduction

Within the family of so called Aurivillius phases (Aurivillius, 1949, 1950), there exists a large number
of displacive ferroelectrics (Subbarao, 1973; Singh, Bopardikar \& Atkare, 1988). These displacive ferroelectrics have room-temperature structures which can be described in terms of small displacive perturbations away from an $14 / \mathrm{mmm}, a^{\prime}=b^{\prime}=3.85 \AA$, prototype parent structure that consists of perovskite-like $A_{n-1} B_{n} \mathrm{O}_{3 n+1}$ slabs regularly interleaved with $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers (see Fig. 1 for $n=3$). The parent structure is presumed to correspond to the crystal structure above the high-temperature phase transition which occurs at the so called Curie temperature. However, in several instances additional phase transitions are known to occur at different temperatures (Subbarao, 1973; Newnham, Wolfe \& Dorrian, 1971). This poses questions as to the nature of these changes.

Fig. 1. A perspective drawing, approximately down $\langle 110\rangle$, of the undistorted Fmmm parent structure of $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$. Only atoms between $\frac{1}{4} \mathbf{c}$ and $\frac{3}{4} \mathbf{c}$ are shown.

[^0]: * Permanent address: Department of Chemistry, Federal University of Minas Gerais, CP 702, 30161 Belo Horizonte, Brazil.

[^1]: * Lists of structure factors, deformation coefficients and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52743 (80 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

